
1. Introduction
Integrated, Coordinated, Open, Networked (ICON) science aims to enhance synthesis, increase resource effi-
ciency, and create transferable knowledge (Goldman, et  al.,  2021b). This article belongs to a collection of 

Abstract This article is composed of three independent commentaries about the state of 
Integrated, Coordinated, Open, Networked (ICON) principles (Goldman, et al., 2021b, https://doi.
org/10.1029/2021EO153180) in Earth and Space Science Informatics (ESSI) and includes discussion on the 
opportunities and challenges of adopting them. Each commentary focuses on a different topic: (Section 2) 
Global collaboration, cyberinfrastructure, and data sharing; (Section 3) Machine learning for multiscale 
modeling; (Section 4) Aerial and satellite remote sensing for advancing Earth system model development by 
integrating field and ancillary data. ESSI addresses data management practices, computation and analysis, 
and hardware and software infrastructure. Our role in ICON science therefore involves collaborative work to 
assess, design, implement, and promote practices and tools that enable effective data management, discovery, 
integration, and reuse for interdisciplinary work in Earth and space science disciplines. Networks of diverse 
people with expertise across Earth, space, and data science disciplines are essential for efficient and ethical 
exchanges of findable, accessible, interoperable, and reusable (FAIR) research products and practices. 
Our challenge is then to coordinate the development of standards, curation practices, and tools that enable 
integrating and reusing multiple data types, software, multi-scale models, and machine learning approaches 
across disciplines in a way that is as open and/or FAIR as ethically possible. This is a major endeavor that could 
greatly increase the pace and potential of interdisciplinary scientific discovery.

Plain Language Summary We present commentaries on the state of “Integrated, Coordinated, 
Open, Networked (ICON) principles” in Earth and Space Science Informatics. ICON principles are meant to 
improve the research experience for all. Ultimately, data standardized according to community conventions 
and formats lead to more effective and efficient collaboration, data discovery, integration, and analyses. Data 
standards, tools, and machine learning developed using ICON principles enhance our understanding of Earth 
processes. Using ICON principles improves model results and efficacy, fosters interdisciplinary research, 
and provides a framework by which non-experts can confidently contribute volunteered data and findings. 
Standardized data also provides reliable common resources to help train and benchmark machine learning 
algorithms. When networked communities work together to standardize and share data openly, the resulting 
web of research products is more readily findable, accessible, interoperable, and reusable. Ongoing support is 
crucial to develop and sustain the people, systems, and tools necessary to embrace ICON principles in Earth 
and Space Science Informatics now and in the future.
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Key Points:
•  Networks across communities, with 

Coordinated data and information 
modeling practices, improve scientific 
outcomes for all involved

•  Integrated, Coordinated, and Open 
data requires sustainable support to 
create and maintain infrastructure for 
interdisciplinary Networks

•  Integrated and Coordinated use of data 
in machine learning calls for Open 
benchmark datasets shared across 
Networks for improved outcomes
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commentaries (Goldman et  al.,  2021a) spanning geoscience on the state and future of ICON science. Earth 
and Space Science Informatics (ESSI) encompasses a broad field that addresses data management practices, 
computation and analysis, and hardware and software infrastructure. ESSI's role in ICON science therefore 
involves collaborative work to assess, design, implement, and promote practices and tools that enable effective 
data management, discovery, integration, and reuse for interdisciplinary work in Earth and space science (ESS) 
disciplines. In this series of commentaries, we examine the current state, challenges, and opportunities of ICON 
science through the lenses of global collaboration, cyberinfrastructure, and data sharing (Section 2); machine 
learning and multiscale modeling (Section 3); and remote sensing for advancing Earth system models (ESM) 
development by integrating field and ancillary data (Section 4).

2. Global Collaboration, Cyberinfrastructure, and Data Sharing
2.1. Current Status

Global collaboration across disciplines is essential to the development and implementation of data/metadata 
standards and cyberinfrastructures. Thus, many organizations have emerged to facilitate such collaboration, for 
example, Research Data Alliance, World Data System, Earth Science Information Partners. These organizations 
have produced numerous active groups involved in Earth, space and environmental science data and research, and 
developed many data tools and services, for example, Earth, Space and Environmental Sciences Data Vocabu-
lary Repositories. Research is more efficient with Networked data practices and cyberinfrastructures that support 
scientific discovery. Yet, there is still a large disconnect and lack of Coordination across many informatics 
communities and the broader communities we aim to support.

Research teams often lack sufficient resources (e.g., appropriate cyberinfrastructure, expert data/software 
personnel, financial allotment) to effectively manage, standardize, and publish high-quality data (Mons, 2020). 
This hinders data from being Open and/or Findable, Accessible, Interoperable, and Reusable (FAIR; Wilkin-
son et  al.,  2016). Further, specific criteria to implement the FAIR Guiding Principles (Gries et  al.,  2019; 
Jones et al., 2019) inevitably vary across disciplines and data types as inconsistencies in interpretations of the 
principles have grown (e.g., Kinkade & Shepherd,  2021; Mons et  al.,  2017; Stall et  al.,  2019). Importantly, 
FAIR does not mean Open; data can be Open without being FAIR, and vice versa (see What  is  the  differ-
ence between “FAIR data” and “Open data” if there is one?). Thus, even if the data cannot be fully Open, it is still 
possible for the science itself to be Open, or at least transparent.

Supporting ESS research requires assessing, designing, building, and maintaining cyberinfrastructures (e.g., 
data repositories/archives, application programming interfaces (APIs), visualization tools, search interfaces) 
that are often organized around a particular data type, discipline, or organization (e.g., Pertzold et al., 2019). 
Ever-increasing volumes of open data and tools now allow us to ask science questions that synthesize data 
and knowledge across scientific disciplines from globally distributed resources, thus expanding the impact 
of funded research (e.g., Michener,  2015; Rosenberg et  al.,  2019). More successful Networked data sharing 
efforts (e.g., Global Biodiversity Information Facility, Ameriflux, Consortium of Universities for the Advance-
ment  of  Hydrologic  Science,  Inc., Long-Term  Ecological  Research  Network, National  Ecological  Observa-
tory Network, Deep Carbon Observatory, HydroShare) have been driven by (a) demand for and funding to support 
a specific data type (Barrett et al., 2012; Novick et al., 2018; Robertson et al., 2014); (b) reporting standards that 
enable global data search and integration (e.g., Wieczorek et al., 2012; Yilmaz et al., 2011); and (c) associated 
user-friendly tools (Clark et al., 2016; Robertson et al., 2014).

2.2. Challenges and Opportunities

Most cyberinfrastructures lack the resources for Integration and Coordination necessary for broader interdis-
ciplinary work, including guidance and leading practices; domain semantics; technical, data, methodological, 
and instrumentation standards; workflow management; training; and sustainable technical and financial support. 
These deficits hinder the availability of Open data that could foster machine actionable, interdisciplinary scien-
tific discovery. While existing standards and practices may address similar concepts, they are not fully interop-
erable or Integrated within and across relevant disciplines. Valuable resources are spent developing/updating 
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translators, or disciplinary standards are simply disconnected and inefficient for interdisciplinary users. Coor-
dination is needed to implement standards for effective interdisciplinary data discovery and exchange. A major 
challenge to Coordination involves a lack of consistent and transparent protocols (e.g., data and code production, 
processing methods) across interdisciplinary teams. Further, informatics initiatives and working groups (e.g., 
RDA, ESIP) are primarily volunteer-based without appropriate recognition or funding that would accelerate and 
improve this work. These combined factors create barriers to Open and FAIR data.

Replicable and transparent research that reflects ICON principles requires sustainable investment in cyberin-
frastructure to improve interoperability and Integration. Global high-level Coordination across organizations is 
needed to bridge siled efforts across disciplines, organizations, and/or countries. A commitment to community 
engagement is needed to bring together input across disciplines, understand data management challenges and 
needs, and promote the adoption of shared practices. Making data as Open and/or FAIR as ethically possible 
requires key advocates who facilitate Networked collaboration.

Data users, code contributors, and tool developers should align with established standards or community prac-
tices. We can encourage practices that promote ICON principles, such as Open publication of study plans (e.g., 
PLOS ONE study proposals), data production and processing protocols (e.g., Common Workflow Language), 
and software code. We must continually evaluate how to Coordinate and Integrate across existing cyberinfra-
structure from local to global scales, which involves iterative rounds of engagement; education and outreach; and 
feedback across data providers, tool and service creators, and scientists who use ESS data and services. Coordi-
nating Networks across disciplines will involve technical approaches to connect related data (e.g., globally unique 
and resolvable persistent identifiers (PIDs), APIs, ontologies, geospatial standards) and promoting widespread 
adoption of community standards that improve scientific outcomes and benefit all participants in the Network. 
Coordination is also key to shifting legacy cyberinfrastructure and data to be more ICON-aligned.

3. Machine Learning for Multiscale Modeling
3.1. Current Status

Over the past decade, artificial intelligence approaches, including machine learning (AI/ML), have revolution-
ized scientific discovery across disciplines, including Earth and space science informaticsinformatics (Maskey, 
Alemohannad, et al., 2020). The AI/ML revolution, driven by a wealth of Open data and rapid technological 
development in computational cyberinfrastructure, has led to more processing power and greater Networking 
between cyberinfrastructure as well as data generators and data users which allows unprecedented resource 
and data sharing. There are many success stories demonstrating how AI/ML has been used to address chal-
lenging issues in ESS, for example, extreme weather prediction (Maskey, Ramachandran, et al., 2020; Pradhan 
et al., 2018; Wimmers et al., 2019), land use/land cover change monitoring (Hansen et al., 2013), Earth system 
modeling (Reichstein et al., 2019), endangered species identification (Allen et al., 2021), spatial downscaling 
of climate models and satellite observations (López López et  al.,  2018; Vandal et  al.,  2019), space weather 
forecasting (Wintoft et al., 2017), and lunar and planetary landform classification (Palafox et al., 2017; Silburt 
et al., 2019). Various funding agencies worldwide have recently released their strategic plans and guidelines to 
expand the investment in AI/ML research which will further its adoption within informatics for at least the next 
decade to accelerate scientific discovery and address pressing societal issues such as combatting climate change, 
facilitating the energy transition, and ensuring food security.

3.2. Challenges and Opportunities

To accelerate this adoption, the ESS community needs to collectively address several key challenges to make AI/
ML in ESS more efficient and ICON-aligned. Most AI/ML applications in ESS are ad hoc research that lacks 
system-wide Coordination and are time-consuming. There are little AI-ready data (e.g., cleaned, harmonized, 
formatted, well documented) that can be efficiently Integrated across domains or applications and few recom-
mended practices on proper model development and documentation (Maskey, Alemohammad, et al., 2020). As 
the capacity and application scope of AI/ML heavily depends on patterns in training data, it should be as repre-
sentative as possible. These requirements for big training datasets have led to calls for libraries of Open and FAIR 

https://plos.org/protocols/?gclid=Cj0KCQjw5auGBhDEARIsAFyNm9GAtLZIYhnQJdmR61GGPYg--JQm4eB41T9dyIuCi3CUt44bHujpVPkaAoOhEALw_wcB
https://github.com/common-workflow-language
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benchmark datasets (WILDS, Koh et al., 2020; Radiant Earth Foundation; Rasp et al., 2020) related to questions 
within ESS (Crystal-Ornelas et al., 2021).

AI-ready training datasets and standardized AI/ML model development practices would enable the ESS commu-
nity to collaboratively develop open AI/ML applications at scale. However, there are no current communi-
ty-recommended practices on how to properly develop, document, and share the AI/ML applications that track 
provenance and enable reproducibility (Sun et al., 2020). Increased connection through cloud computing (Gore-
lick et al., 2017; Mayer-Schönberger & Cukier, 2013) allows sharing data and models in the cloud, enabling 
Networked researchers around the world access to these resources without being limited by local computing 
power. However, despite recent progress, work needs to be done to make cloud computing more accessible. 
Increased Openness in the exchange of data handling practices allows sharing common workflows while handling 
large datasets. Integration across disciplines could be improved by: (a) including physics in ML models (Jia 
et al., 2019; Raissi et al., 2019), (b) leveraging ML exploratory tools (Montavon et al., 2017; Ying et al., 2019), 
and (c) better mechanism for codevelopment between domain experts and AI/ML developers. Coordination via 
automated workflows would improve development efficiency (e.g., auto-sklearn, AutoKeras) (He et al., 2021). 
To improve AI engineering efficiency and reduce data collection and processing costs, developers may also use 
data augmentation methods such as mixup (Zhang et al., 2017) to fill in the missing data and enhance data quality 
(Alexandrov & Vesselinov, 2014; Vesselinov et al., 2018).

The ability to readily interpret and generalize AI/ML models are also major concerns for the ESS community 
(McGovern et al., 2019; Toms et al., 2020). To address complex questions in ESS systems, we need to better 
understand why AI/ML models perform in a certain way, their consistency with domain knowledge, and how 
models developed using a specific set of data can adjust dynamically to shifts in ESS data. To address these 
concerns, the ESS community should establish benchmark tasks with Open and standardized data and a Coordi-
nated evaluation framework to enhance future development. Licensing approaches are still evolving, highlighting 
the need for increased Coordination on policy and ethics considerations. Ethical awareness, conduct, and respon-
sibility in AI/ML and related activities are essential to the practice of principled research; while beyond the scope 
of this paper, some particular concerns include misleading results due to biased training data; cognitive biases in 
general; and incorrect annotation, classification or characterization of data. AI/ML applications heavily rely on 
input data, thus the ESS community needs to establish Coordinated standards that clarify the impact of input data 
quality on downstream applications to ensure trustworthiness. These community standards should Integrate both 
domain sciences and social sciences.

4. Aerial and Satellite Remote Sensing for Advancing Earth System Model 
Development by Integrating Field and Ancillary Data
4.1. Current Status

Remote sensing technology combined with field and ancillary data (e.g., field measurements, other imagery; 
Acton, 1996) provides a compelling example of how dedicated resources supporting ICON science and advanced 
AI/ML technologies have transformed the development of ESMs as they have advanced from aerial imagery 
of the early nineteenth century (Necsoiu et  al.,  2013) to the present-day's Google Earth Engine (Gorelick 
et al., 2017) and Unmanned Aerial Vehicles (Singh & Frazier, 2018). Most publicly-funded remote sensing data-
sets are Open and hosted on public repositories (e.g., government-sponsored repositories, Github, Zenodo). In 
addition, this data is distributed through Coordinated standards between government agencies across the globe 
(Alameh, 2020). Integration of remote sensing technology with independent field measurements and high spatial 
resolution satellite imagery has been essential for ESM validation. This also includes estimating derived data 
products (e.g., from satellites) accuracy and quantifying uncertainty (Strahler et al., 2006). Crowdsourcing and 
citizen science have further advanced the integration of remote sensing with field data (e.g., RaspberryShake, 
Khan et  al.,  2018; Saralioglu & Gungor,  2020; Worldwide Hydrobiogeochemistry Observation Network for 
Dynamic River Systems [WHONDRS], Stegen & Goldman, 2018), resulting in broader Networked efforts that 
benefit researchers and a wide variety of data users. Many agencies in the US and Europe have made some or 
all of their data Open to all users internationally. Some examples, associated cyberinfrastructure, and tools are 
included in an associated github repository.

https://wilds.stanford.edu/
https://www.radiant.earth/
https://raspberryshake.org/
https://www.pnnl.gov/projects/WHONDRS
https://github.com/maruti-iitm/EOS-ESSI-Data-Table
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4.2. Challenges and Opportunities

Two primary challenges that the ESM community still faces are limited global data collection and inadequate 
cyberinfrastructure. Despite advances in sensors, crowdsourcing, and citizen science (e.g., RaspberryShake, 
WHONDRS), collecting and hosting high-quality global data present immense challenges. For example, Rasp-
berryShake has collected more than 30 TB of seismographic data over the past decade but lacks the necessary 
cyberinfrastructure to reliably and sustainably store it.

Recent progress in AI/ML has improved available data to represent Earth system processes (e.g., thermal, land 
physics and hydrology, radiation, atmospheric ocean circulation) in ESMs (Rasp et al., 2018). ML, in particular, 
requires massive datasets to represent processes at both normal and extreme events (e.g., hurricanes, wildfires); 
however, extreme event data are rare due to the unique challenges faced during collection. Thus, the concept 
of crowdsourcing data collection, using Coordinated methods (e.g., RaspberryShake, WHONDRS) on extreme 
events, is an attractive option that improves Networked research.

There has been a Coordinated effort from US and European agencies to develop cyberinfrastructure that improves 
and increases access to data to enhance predictions and understanding of various Earth system processes. For exam-
ple, the European Space Agency Sentinel data products are recently available in the Copernicus Data and Infor-
mation Access Service cloud environments. In addition, the US Geological Survey Landsat satellite data inven-
tory has been Open to the public since 2008 and has been in the cloud since 2020 (U.S. Geological Survey, 2008). 
Furthermore, the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmos-
pheric Administration (NOAA) have adopted a strategic vision to leverage cloud computing and operate multiple 
components of their data systems in a retail cloud environment. This calls for action to identify the opportunities 
to improve policy and strategy planning across various countries to make satellite data products accessible to all 
users in open data portals. In addition, automated quality assurance of satellite observations is needed to support 
global, regional, or local data services. Coordinated across international agencies, a standard open data cyberin-
frastructure will help to assure ESM data from multiple sources (national, regional, governments, academia, and 
the private sector) are available and easily Integrated into open-source platforms and networks.

Coordination would help international agencies and organizations build a standard open data cyberinfrastructure 
to ensure that Earth science data are free, Open, and easily Integrated into ESMs. We also need next-generation 
sensors and satellites which provide more fine resolution data to increase the accuracy of ESMs. For example, 
the joint NASA-Indian Space Research Organization (ISRO) Synthetic Aperture Radar (SAR) (NISAR) mission 
is anticipated to provide Open radar data with a spatial resolution of less than a centimeter to Integrate into ESM 
for studying the Earth's features and processes. The role of AI/ML needs to be expanded to fill the gaps of remote 
sensing data.

5. Concluding Remarks
Earth and space science research facilitated by modern informatics techniques that follow the ICON principles 
enables data synthesis, increases resource efficiency, and creates knowledge that transcends individual systems 
(Goldman, et al., 2021b). ESSI can work to ensure that diverse scientists have user-friendly resources to contrib-
ute and use data that follows community conventions. Such collections of Open and/or FAIR data, shared across 
Networks for mutual benefit, are critical to appropriately train AI/ML, which furthers Integration and Coordi-
nation in Earth and space science informatics. Cross-community Networks improve scientific outcomes for all 
involved. Communities must work together to share data openly using community standards, to produce Open 
and/or FAIR data that enables data synthesis and can revolutionize fields of research (e.g., Kelling et al., 2009). 
Ongoing, sustainable support is vital to create and maintain the cyberinfrastructure and human resources neces-
sary for Integrated, Coordinated, and Open and/or FAIR data (as much ethically as possible) for interdisciplinary 
Networks.

Data Availability Statement
No data was used for this commentary.
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